Screening Ornamental Pepper Cultivars for Heat Tolerance by in-vitro Pollen Germination, Pollen Tube Length and Physiological Parameters

> Bandara Gajanayake Brian Trader, K. Raja Reddy and Richard Harkess

Department of Plant and Soil Sciences Mississippi State University, Mississippi State, MS 39762

Presentation Outline

- ✓ Introduction and Rationale
- ✓ Objectives
- ✓ Materials and Methods
- ✓ Results
- ✓ Conclusions

Introduction and Rationale

- Ornamental peppers (Capsicum annuum L.) are widely used as a potted flowering or bedding plants.
- Grown primarily for their attractiveness of fruits with foliage.
- Flowers are not fertilized at temperature above 32°C (87°F).
- High temperatures may cause reduction in fruit set and reduces aesthetic and commercial value.
- Changes projected in the future climate will exacerbate the high temperature effects on fruit set.
- It is important to develop new cultivars tolerant to major environmental stress like high temperature.

Objectives

- Quantify in vitro pollen germination and pollen tube length responses of ornamental pepper cultivars to temperature.
- Determine cultivar-specific cardinal temperatures based on pollen parameters of ornamental peppers.
- Develop correlation between pollen based parameters and physiological parameters for thermotolerance.
- Classify the cultivars for thermotolerance using cardinal temperatures and physiological parameters.

Materials and Methods

- Materials:
 - Twelve ornamental pepper cultivars were raised in the greenl

(Black Pearl, Chilly Chili, Explosive Ember, Medusa, Purple Flash, Red Missile, Salsa Yellow, Sangria, Thai Hot, Treasures Red, Variegata)

- Growth Conditions:
 - Growth period: May 2009 July 2009
 - Pot size and media: 1 L plastic pots and PROMIX as rooting media
- Irrigation and fertilization: Manually (Twice daily)
- Temperature: 28 ± 4 °C
- Flowers collection: Between 09:00 and 10:00 h

Materials and Methods

Measurements:

- Physiological parameters
 - Cell membrane thermostability (CMT) (Martineau et al.1979)

 $CMT(\%) = [1 - (TEC1/TEC2)]/[1 - (CEC1/CEC2] \times 100$

- Chlorophyll stability index (CSI) (Murty and Majumdar, 1962)

Total chlorophyl content (heated) Total chlorophyl content (control)

Canopy temperature depression (CTD) (Amani et al. 1996)

CTD = Ta - Tc

Materials and Methods

Measurements

- Reproductive Parameters
 - Pollen viability
 - in-vitro pollen germination (PG)
 - *in-vitro* pollen tube length (PTL)
- ✓ Pollen Viability Tetrazolium test
- ✓ Pollen Germination and Pollen Tube Length
 - Modified pollen germination medium (Reddy and Kakani, 2007)
 - Pollens were spreaded on to the medium in Petri-dishes
 - Pollens were cultured and exposed to eight temperatures from 10 to 40°C at 5°C interval

Materials and Methods

- · Curve fitting and analysis
 - Bilinear and quadratic regression models were used to analyze the data on pollen germination and tube length
- · Cardinal temperature
 - Cardinal (Minimum, optimum and maximum) temperatures were derived from the models.
- Ornamental pepper cultivars were classified for temperature tolerance based on following parameters:

1. Pollen viability (%)	4. Cell membrane thermostability			
2. Maximum pollen germination (%)	5. Chlorophyll stability index			
3. Maximum pollen tube length	6. Canopy temperature depression			
7. Cardinal temperatures (T_{min} , T_{opt} , T_{max}) for both PG and PTL				

8

Materials and Methods

✓ Individual stress response indices (ISRI) and then cumulative temperature response indices (CTRI) were calculated based on 12 parameters

$$ISRI = P_{t}/P_{h}$$

$$CTRI = \begin{pmatrix} \frac{PV\%_{t}}{PV\%_{h}} + \frac{PG\%_{t}}{PG\%_{h}} + \frac{PTL_{t}}{PTL_{h}} + \frac{PG_{min_{t}}}{PG_{min_{h}}} + \frac{PG_{opt_{h}}}{PG_{opt_{h}}} + \frac{PG_{max_{t}}}{PG_{max_{h}}} + \\ \frac{PTL_{min_{t}}}{PTL_{min_{h}}} + \frac{PTL_{opt_{h}}}{PTL_{opt_{h}}} + \frac{PTL_{max_{t}}}{PTL_{max_{h}}} + \frac{CMT_{t}}{CMT_{h}} + \frac{CTD_{t}}{CTD_{h}} + \begin{pmatrix} CSI_{t} \\ CSI_{h} \end{pmatrix}^{-1} \end{pmatrix}$$

Classification of cultivars for thermotolerance based on CTRI
Sensitive: > Minimum CTRI + 1.5 stdev and < minimum CTRI + 2.5 stdev

Intermediate: > Minimum CTRI + 2.5 stdev and < minimum CTRI + 2.5 stdev

Tolerant: > Minimum CTRI + 2.5 stdev

Results							
Classification of Cultivars Based on CTRI							
Sensiti (CTRI < 9		Intermediate (CTRI = 9.74 – 10.57)		Heat Tolerant (CTRI > 10.57)			
Black Pearl (9.3	(3)	Calico (9.84)		Thai Hot (11.33)			
Red Missile (9.0	08)	Explosive Ember (10.75)		Treasures Red (11.19)			
Salsa Yellow (8.	.56)	Purple Flash (10.04)		Medusa (11.18)			
		Sangria (9.89)		Chilly Chilli	(10.57)		
		Variegata (10.32)					
雅		變	The second				
Salsa	Black	Explosive	Calico	Treasures	Medusa		
Yellow	Pearl	Ember		Red			
		Heat tolera	nce		15		

Conclusions

- ✓ Both physiological (Cell membrane thermostability and chlorophyll stability index) and pollen parameters seems to be useful to screen ornamental pepper cultivars for thermotolerance.
- ✓ Even though significant correlation exists between physiological and pollen-based parameters (r = 0.54* and r = 0.63*), screening based on pollen would yield better results for reproductive tolerance.
- The identified heat tolerant cultivars are potential candidates for ornamental pepper breeding programs and in selecting cultivars for a niche environment.

References

- Reddy, K.R., and V.G. Kakani. 2007. Screening *Capsicum* species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Scientia Horticulturae 112:130-135.
- Kakani, V., K. Reddy, S. Koti, T. Wallace, P. Prasad, V. Reddy, and D. Zhao. 2005. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annals of Botany 96:59-67.
- Salem, M., V. Kakani, S. Koti, and K. Reddy. 2007. Pollen-Based Screening of Soybean Genotypes for High Temperatures. Crop Science. 47 219-231.
- Singh, S., V. Kakani, D. Brand, B. Baldwin, and K. Reddy. 2008. Assessment of cold and heat tolerance of winter-grown canola (*Brassica napus* L.) cultivars by pollen-based parameters. Journal of Agronomy and Crop Science 194:225-236.

