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Experiments were conducted to examine the use of spectral reflectance curves for
discriminating between plant species across moisture levels. Weed species and soy-
bean were grown at three moisture levels, and spectral reflectance data and leaf water
potential were collected every other day after the imposition of moisture stress at 8
wk after planting. Moisture stress did not reduce the ability to discriminate between
species. As moisture stress increased, it became easier to distinguish between species,
regardless of analysis technique. Signature amplitudes of the top five bands, discrete
wavelet transforms, and multiple indices were promising analysis techniques. Dis-
criminant models created from data set of 1 yr and validated on additional data sets
provided, on average, approximately 80% accurate classification among weeds and
crop. This suggests that these models are relatively robust and could potentially be
used across environmental conditions in field scenarios.
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Producers could save time and money while decreasing
the amount of pesticide released into the environment by
applying herbicides site specifically. Weeds most often do
not grow uniformly across the field but rather grow in ag-
gregated patches (Cardina et al. 1997). To manage weed
populations site specifically, fields must be sampled relatively
intensively. The degree to which fields must be sampled for
site-specific herbicide application to be effective is currently
cost- and time prohibitive (Clay et al. 1999). Remote sens-
ing is a tool that can be used to help identify weed infes-
tations. The accuracy with which ground, aerial, and satel-
lite sensors can measure targets in the field is constantly
increasing (Thenkabail 2002). For this technology to be
valuable in a variety of circumstances and locations, it is
necessary to discriminate between weeds and crop under a
variety of conditions. The degree to which moisture stress
influences our ability to discriminate among weed species
and the crop is relatively unknown.

Considerable research has been conducted on the use of
remote sensing to monitor moisture content of vegetation
(Ceccato et al. 2001; Curran et al. 2001; Danson et al.
1992; Gond et al. 1999; Hardy and Burgan 1999; Hunt
and Rock 1989; Moran et al. 1994; Peñuelas et al. 1993;
Steinmetz et al. 1990; Unganai and Kogan 1998). Remote
sensing has also been used to assess the moisture status of
vegetation to predict the likelihood and intensity of forest
or rangeland fires (Roberts et al. 1993, 1997). Cohen (1991)
used vegetation indices to estimate leaf water potential
(LWP) and relative water content. The bands that com-
prised these indices were the Thematic Mapper (TM) bands.
The bands that were most useful in identifying stress were
TM5 (1.55 to 1.75 mm) and TM7 (2.08 to 2.35 mm).
These bands were composed of broad portions of the elec-
tromagnetic spectrum. The indices created from these bands
were suitable for use in predicting stress or accumulated ef-

fect of moisture deprivation; yet, they were not useful in
diagnosing fluctuations in water content of vegetation. Al-
though a majority of the indices published in the literature
tend to focus on the visible region of the electromagnetic
spectrum, Danson et al. (1992) suggest that the near infra-
red (NIR) and midinfrared region may also be useful to
assess moisture status of vegetation. The particular region of
the electromagnetic spectrum from which these portions of
data are gathered to create the indices, as well as the band-
widths, will determine the usefulness of the indices created.
For instance, Hardy and Burgan (1999) used the Normal-
ized Difference Vegetation Index (NDVI) to assess the mois-
ture status of a grassy site composed of wheatgrass (Agro-
pyron canium L.), a shrub site composed of sagebrush (Ar-
temisia tridentate Nutt.), and an open forest site composed
of Douglas fir (Pseudotsuga menziesii Mirb.) and ponderosa
pine (Pinus ponderosa Douglas ex. Lawson). No significant
correlations were found between NDVI and vegetation
moisture.

Rouse et al. (1973) and Tucker (1979) were pioneers in
using portions of the electromagnetic spectrum in ratios
such as NDVI (NIR 2 red)/(NIR 1 red) to assess vegeta-
tion health and vigor. Because of the tendency for healthy
vegetation to absorb red light and reflect energy in the NIR,
vigorous plants will have a high NDVI value. Conversely,
as plant health declines, so does the ability to absorb red
light and reflect NIR; this scenario results in low NDVI
values signifying a decrease in plant vigor. A series of indices
commonly found in the literature were compiled and used
as classifiers (Table 1). Additional indices such as Soil-Ad-
justed Vegetation Index have been created that address issues
such as minimizing soil background interference (Huete
1988). With this concept of tailoring an index to address a
particular need, additional Drought Index of Normalized
Observations indices (Figure 1; Table 2) were designed to
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TABLE 1. Indices used for assessing vegetative health and status.a

Indices Ratiosb References

RVI (NIR/Red) Jordan (1969)
NDVI (NIR 2 Red)/(NIR 1 Red) Rouse et al. (1973), Tucker (1979)
DVI (NIR 2 Red) Lillesand and Kiefer (1987), Richardson and Everitt (1992)
NDVIg (NIR 2 Green)/(NIR 1 Green) Gitelson et al. (1996)
IPVI NIR/(NIR 1 Red) Crippen (1990)
MSI (TM5/TM4) Hunt and Rock (1989)

a Abbreviations: DVI, Difference Vegetation Index; IPVI, Infrared Percentage Vegetation Index; MSI, Moisture Stress Index; NDVI, Normalized Differ-
ence Vegetation Index; NDVIg, NDVI green; RVI, Ratio Vegetation Index; TM, Thematic Mapper.

b Green, 545 to 555 nm; red, 670 to 680 nm; NIR, 835 to 845 nm; TM4, 760 to 900 nm; and TM5, 1,550 to 1,750 nm.

FIGURE 1. Drought indices of normalized observations were compiled from multiple regionsa of the electromagnetic spectrum including drought-sensitive
areas between 1,500 and 2,500 nm.

maximize differences apparent in specific regions of the elec-
tromagnetic spectrum between moisture-stressed treatments
and well watered controls. Other studies have also suggested
that the short-wave infrared (1,400 to 2,500 nm) is largely
influenced by plant water status (Gausman 1985; Tucker
1980).

Not only is the type of vegetation index chosen to eval-
uate the data important, the selection of leaves and the dif-
ferences in maturity among those leaves is also significant
(Patakas and Noitsakis 2001). Allen et al. (1998) suggest
that environmental factors other than wind and temperature
may contribute to the leaf water status of the plant. For
example, elevated CO2 causes stomatal conductance decreas-
es, thereby increasing overall LWP of soybean. Peñuelas et
al. (1993) noted that spectral signals signifying drought
stress were more evident at the canopy level than at the leaf
level. The highest correlation coefficients among the water

status indices were observed in the species that lost cell wall
elasticity in response to drought stress, suggesting that leaf
architecture and structural effects caused by the canopy ori-
entation may strongly influence ability to detect moisture
status.

Not only will remote sensing be used to distinguish be-
tween species within a constant moisture level but also will
be used across a range of moisture conditions in fields with
variable elevation and soil textures. There is spatial variabil-
ity with respect to moisture status within a field, as well as
temporal variability. A rainfall event could drastically change
the moisture status within a field, as could irrigation. If
remote sensing can be used to distinguish between weeds
and crops across a variety of moisture levels, this could be
an important first step in demonstrating the usefulness of
remote sensing in weed discrimination across environmental
conditions.
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TABLE 2. Drought indices of normalized observations (DINO)
composed of drought sensitive regions of the electromagnetic spec-
trum.

Indices Portions of the spectruma

DINO1
DINO2
DINO3
DINO4
DINO5
DINO6

(P1 2 RED)/(P1 1 RED)
(P2 2 RED)/(P2 1 RED)
(P1 1 P2)/RED
(P1/RED)2

(P1 1 P2)2/RED
((P1 1 P2)2 2 720)/((P1 1 P2)2 1 720)

DINO7
DINO8
DINO9
DINO10
DINO11
DINO12

(P1 1 P2)2/720
(10 3 P2)2/720
((P2)2 2 720)/((P2)2 1 720)
((5 3 P2)2 2 720)/((5 3 P2)2 1 720)
P2
(P2 2 720)/(P2 1 720)

a Abbreviations: P1, Peak 1 5 average (1,631 to 1,641 nm); P2, Peak 2
5 average (2,215 to 2,225 nm); RED, average (670 to 680 nm); 720, 720
nm.

There has yet to be any research focusing on the ability
to discriminate between weeds and crop across moisture lev-
els. This is an important and very applied question that
should be addressed so that remote sensing technologies may
be used in field applications to successfully discriminate be-
tween weeds and crops under a variety of environmental
conditions. The objective of this research was to determine
whether spectral reflectance curves could be used to distin-
guish between plant species under a variety of moisture lev-
els.

Materials and Methods

Plant Culture

This research was conducted during the summers of 2000
and 2001, outdoors at the R. Rodney Foil Plant Science
Research Center at Mississippi State, MS. The experiment
was conducted in a randomized complete block design with
a 3 by 3 factorial arrangement of treatments, with species
and moisture level as factors. There were 11 rows of 12-L
pots. The 1st and 11th rows were border rows. The nine
remaining rows consisted of 17 pots per row. Pots on either
end of a row were also border pots. The remaining 15 pots
per row consisted of 5 pots each of the following: common
cocklebur (Xanthium strumarium L.), sicklepod (Cassia ob-
tusifolia L.), and soybean (cultivar ‘Hutcheson’). All species
were grown in masonry sand-filled 12-L pots. All species
were sown in excess and thinned to two plants per pot.
Planting date in both years was mid-July. Throughout the
first 8 wk, plants were grown under ideal nutrient and mois-
ture conditions. Plants were fertilized and irrigated simul-
taneously with a computer-regulated drip-irrigation system.
The nutrient medium consisted of half-strength Hoagland’s
solution (Hoagland and Arnon 1950).

Moisture Treatments

After the eighth week, moisture stress was induced by
decreasing the time, and subsequently the amount, that
plants were watered. There were three moisture regimes.
The plants receiving no moisture stress (moisture level III,
100%) were watered three times daily for a total of 45 min

and 2.25 L. The plants in the second water-stress treatment
(moisture level II, 60%) were watered a total of 27 min and
1.35 L daily. The plants in the first water-stress treatment
(moisture level I, 40%) were watered a total of 18 min and
0.9 L daily. The moisture treatments were selected on the
basis of on a preliminary study with soybean that resulted
in midday LWPs in the following three ranges: 2 0.9 to 2
1.5 MPa for moisture level III, 2 1.5 to 2 2.0 MPa for
moisture level II, and more than 2 2.0 MPa for moisture
level I (K. R. Reddy, unpublished data).

Spectral Data Acquisition
Spectral reflectance data were generated at approximately

2-d intervals from September 10, 2000, 1 d after stress
(DAS), through October 2, 2000. Spectral reflectance curves
and LWP data were generated for an individual leaf from
three plants of each species (three in 2000 and two in 2001)
per moisture level (three) per replication (three). In 2000,
there were 81 separate samples per given sampling date; in
2001, there were 54 samples per sampling date. Data from
2000 at 7 DAS is absent from the analysis because a mal-
function in the spectroradiometer resulted in unusable data.
In 2001, data were collected September 20, 1 DAS, through
September 30, 10 DAS. Soybean data were not collected in
2001 because of an infestation of a downy mildew fungus
[Peronospora manshurica (Naum.) Syd. ex. Gaum.]. Growth
of this fungus was enhanced by particularly wet growing
conditions in 2001. The fungus was identified, and an ap-
plication of chlorothalonil (4.8 kg ai ha21) was made in an
effort to control it; however, its lifecycle had already pro-
gressed to a point at which small chlorotic lesions were pres-
ent on the soybean leaves.

Reflectance data were generated between the hours of
11:00 A.M. and 1:00 P.M. at 2-d intervals. Data were gen-
erated from individual leaves. Individual leaves were chosen
so that canopy, leaf angle, and background effects from soil
would be negated. Leaves were specifically chosen from sim-
ilar maturity levels across species to control differences
caused by leaf age or maturity. For soybean, the second and
third unfurled leaves from the top of the plant were mea-
sured. For common cocklebur and sicklepod, the third and
fourth unfurled leaves from the top of the plant were mea-
sured.

Spectral reflectance data were collected with a hand-held,
portable spectroradiometer.1 An active light source (tungsten
filament) was used to minimize the variability inherent with
the use of a passive light source. A passive light source such
as sunlight could be influenced by time of day and environ-
mental conditions such as clouds or haze. One measurement
was taken per leaf using a 258 bare-fiber field-of-view fiber
optic cable. The reflectance of individual leaves, or leaflets
in the case of sicklepod and soybean, was recorded with the
leaf positioned on a flat, foam, black background (Figure
2). The bare-fiber sensor was connected within the active
light source unit such that the sensor was positioned directly
above the leaf. A black circular aperture restricted the area
that the sensor could measure to a diameter of approxi-
mately 3 cm. This circular, 3-cm window was placed on the
upper surface, directly in the center of the common cock-
lebur leaf, the bottom-center of the middle leaf of the soy-
bean leaflet, and the middle of the top-most leaf of the
sicklepod leaflet. A black background positioned directly be-
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FIGURE 2. Data collection used an active light source for measuring individual leaves positioned on a black background.

neath the leaf was used to eliminate background effects.
Once reflectance of the leaf was measured, this leaf was re-
moved from the plant and the LWP measurements were
measured with a pressure chamber.2 Leaf area was also re-
corded with a leaf area meter3 on several sampling dates
throughout the experiment. Green weight and oven-dry
weight were both recorded, and nutrient analyses were also
performed at the beginning (September 10), middle (Sep-
tember 17), and end (October 2) of the 2000 experiment.

These spectral reflectance measurements were collected in
the spectral range of 350 to 2,500 nm. This resulted in
2,151 individual spectral bands for each spectral reflectance
curve, with a bandwidth of 1.4 nm between 350 and 1,000
nm and 1.0 nm between 1,050 and 2,500 nm. Spectral
responses potentially suggesting moisture stress were ana-
lyzed and pertinent features were extracted using indices,
signature amplitudes (SA), and wavelet transforms.

Spectral Data Analysis

Spectral reflectance data were analyzed with SA, discrete
wavelet transforms (DWT) (both with and without linear
discriminant analysis [LDA]), and indices to determine the
utility of these analysis techniques for discriminating be-
tween species grown at no moisture stress (100% moisture),
moderate moisture stress (60% moisture), and high moisture
stress (40% moisture).

Nutrient analyses were performed three times: early (Sep-

tember 9 to 10), middle (September 17), and late (October
2) throughout the summer of 2000. Across species, none of
the nutrient analyses were found to be positively or nega-
tively correlated beyond 0.62 with LWP (data not shown).

SA analysis uses a subset of the spectral bands as features.
Because 2,151 reflectance values are available to be used as
classification features, it is computationally efficient to select
a subset of bands (top five bands) on the basis of discrimi-
nant capability. Receiver operator characteristics (ROC)
analysis was used to determine the efficacy of each band as
a potential classification feature. ROC analysis used in this
study assumes that the two classes’ features have Gaussian
distributions. The area under the ROC curve ranges from
0.5 to 1.0, with 0.5 representing features not useful in clas-
sification (exact overlap of the two classes’ distribution
curves) and 1.0 corresponding to ideal classification features
(no overlap between distribution curves) (Hanley and
McNeil 1982). The second of these three techniques in-
cluded extracting DWT from the hyperspectral response
data and using these as classification features. Recently, the
energies of the DWT coefficients have been used as classi-
fication features (Huang et al. 2001). However, in this study,
classification features are a subset of the DWT coefficients.

The area under the ROC curve was used as a design
parameter for choosing a subset of spectral bands to use as
classification features. The reflectance values for the top five
bands (largest area under the ROC curve) of the original
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FIGURE 3. Examples of a hyperspectral vegetation response and receiver operator characteristics (ROC) curve analysis. ROC curve analysis indicates the
regions of the hyperspectral response that are the best (values approaching one) for discriminating treatments. Hyperspectral data were used to generate
ROC curves to discriminate between moderate- and no-stress treatments at 4, 5, 7, and 8 d after the imposition of moisture stress.

data set of 2,151 bands were used as features. The extracted
feature for each spectral response is a 1- by 5-vector. This
technique was a univariate analysis technique so that only
one band is considered at a time as a potential feature. This
method was used because of its relative simplicity.

LDA was used to increase classification accuracy. LDA
increases the class separability by linearly combining the
available features to form an optimum single scalar value
(Duda et al. 2001). Therefore, the original 1- by 5-feature
vector is eventually reduced to a 1- by 1-feature vector. Fi-
nally, the 1- by 1-feature vector was input into a maximum-
likelihood classifier to determine the appropriate classifica-
tion. It is important to note that the ROC analysis, the LDA
analysis, and the maximum-likelihood decision boundaries
require training data. To fully use all the experimental data
collected in this study, the classification system was trained
and tested using cross-validation analysis.

Figure 3 demonstrates a soybean hyperspectral vegetation

response, as well as the area under the ROC curve as a
function of the spectral band. The two classes used to gen-
erate these ROC curve analyses were soybean and common
cocklebur grown at high moisture stress.

The second type of feature investigated in this study was
based on the DWT of the hyperspectral curve. The DWT
coefficients were computed for a 10-level wavelet decom-
position using the Haar function as the mother wavelet. The
DWT decomposes a signal into a number of detailed co-
efficients and approximation coefficients, depending on the
desired level of decomposition (Graps 1995). Multiple
mother wavelets and wavelet bases are available for use in
decompositions and may be selected accordingly depending
on the application (Burrus et al. 1998; Koger 2001; Leon
2001). The Haar wavelet was a good choice for image pro-
cessing because of its simplicity and fast computational al-
gorithm.

The DWT coefficients obtained from the Haar decom-
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TABLE 3. Signature amplitude 2000 classification accuracies between soybean and weed species across moisture levels using maximum
likelihood with ROCa curve analysis.

Moistureb DASc

Soybean vs. common cocklebur

Soybean Common cocklebur Overall

Soybean vs. sicklepod

Soybean Sicklepod Overall

%

HS 1
3
5
7
8

100
100

88
89

100

100
100

89
100
100

100
100

88
94

100

100
100
100
100

89

100
89

100
100
100

100
94

100
100
94

MS 1
3
5
7
8

100
100

88
100

88

100
100

89
89
89

100
100

88
94
88

100
100
100
100
100

100
100

89
100

89

100
100
94

100
94

NS 1
3
5
7
8

78
100
100
100
100

78
100

78
100

89

78
100

88
100

94

78
100
100
100

89

50
89
89
78
89

65
94
94
88
89

a Abbreviation: ROC, receiver operator characteristics.
b Moisture: HS, high stress (40% moisture); MS, moderate stress (60% moisture); NS, no stress (100% moisture).
c Abbreviation: DAS, days after stress, number of days after the imposition of moisture stress.

TABLE 4. Discrete wavelet transform 2000 classification accuracies between soybean and weed species across moisture levels using maximum
likelihood with ROCa curve analysis.

Moistureb DASc

Soybean vs. common cocklebur

Soybean Common cocklebur Overall

Soybean vs. sicklepod

Soybean Sicklepod Overall

%

HS 1
3
5
7
8

89
89

100
100
100

78
89
89

100
100

83
89
94

100
100

100
89
75
89
89

89
89
78
89

100

94
89
77
89
94

MS 1
3
5
7
8

100
89

100
89

100

100
89

100
78
78

100
89

100
83
88

100
78

100
100
100

100
67
89
89

100

100
72
94
94

100
NS 1

3
5
7
8

89
100

75
100
100

100
100

22
100

89

94
100

47
100

94

78
100

75
100

78

63
89
89

100
89

71
94
82

100
83

a Abbreviation: ROC, receiver operator characteristics.
b Moisture: HS, high stress (40% moisture); MS, moderate stress (60% moisture); NS, no stress (100% moisture).
c Abbreviation: DAS, days after stress, number of days after the imposition of moisture stress.

position were then subjected to ROC analysis, and five co-
efficients with the largest area under the ROC curve were
chosen. LDA was then applied to form the optimum scalar
feature. This scalar was then input into a maximum-likeli-
hood classifier. Cross-validation was used for the system
training and testing.

The third analysis technique was indices that were used
as features in traditional statistical classification procedures.
These analysis procedures were conducted with stepwise dis-
criminant analysis procedure4 using cross-validation (leave-
one-out testing) in all instances.

Results and Discussion

Tables 3 and 4 present classification data using both SA
and DWT across moisture levels in 2000. These data were
collected 1 through 8 DAS. In 2000, SA, DWT, and indices
were all effective tools to discriminate between species across
all moisture levels, providing better than 80% discrimina-
tion between weeds and soybean, regardless of moisture level
(Tables 3–5). In 2000 and 2001, as the moisture stress level
increased from no stress to high stress, classification accu-
racies with indices combinations also increased from an av-
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TABLE 5. Species by species comparison of classification accuracies
in 2000 and 2001 using combinations of indices.

Year Moisturea Species

%

Sicklepod Soybean Overall
2000 HS

MS
NS

99
97
93

98
99
97

98
98
95

2001 HS
MS
NS

—
—
—

—
—
—

—
—
—

Common cocklebur Soybean Overall
2000 HS

MS
NS

92
94
96

89
89
94

91
92
95

2001 HS
MS
NS

—
—
—

—
—
—

—
—
—

Common cocklebur Sicklepod Overall
2000 HS

MS
90
87

93
84

91
86

NS 89 86 87
2001 HS

MS
NS

98
100
100

89
100
100

93
100
100

a Moisture: HS, high stress (40% moisture); MS, moderate stress (60%
moisture); NS, no stress (100% moisture).

TABLE 6. Species comparison within moisture levels using data
pooled across 2000 and 2001 with a linear discriminant function
created from multiple indices.

Moisture level Species

%

Soybean Common cocklebur Overall
HSa

MS
NS

89
96
94

93
93
98

94
95
96

Soybean Sicklepod Overall
HS
MS
NS

100
99
95

97
96
94

99
97
95

Common cocklebur Sicklepod Overall
HS
MS
NS

94
92
94

92
90
89

93
91
91

a Moisture: HS, high stress (40% moisture); MS, moderate stress (60%
moisture); NS, no stress (100% moisture).

erage of 82% across species to 90% or greater in all instances
except one (Table 5). Similar trends were observed in the
SA and DWT analyses. Classification accuracy also tended
to increase with increasing moisture stress. SA provided
more classification consistency than DWT by correctly dis-
criminating common cocklebur from soybean 100% on over
half of the sample dates. Sicklepod was discriminated cor-
rectly from soybean 100% of the time, twice as frequently
with SA compared with DWT. In 2000 with the high-stress
treatment, SA correctly discriminated common cocklebur
from soybean with 100% accuracy on three of the five sam-
ple dates, with an overall accuracy of 96% across all sample
dates (Table 3). Accuracy was still relatively high (92%) for
the common cocklebur vs. soybean with no-stress treatment
(92%). Similar trends were observed when SA was used to
discriminate between sicklepod and soybean. In the 2000
high-stressed treatment, SA also correctly discriminated sick-
lepod from soybean with 100% accuracy on three of the
five sample dates, with an overall accuracy of 99%. For the
sicklepod vs. soybean with no stress, there were no instances
that species were discriminated 100% of the time, but over-
all accuracy was 86% across all sample dates. Because SA
produced consistent data in 2000, and compared with
DWT they are computationally less demanding with respect
to analysis and processing, it was the method of choice for
2001 analysis. In 2001, virtually all the species’ discrimi-
nation accuracies were at least 89% using SA (data not
shown), regardless of moisture level or analysis technique.

To test the robustness or versatility of the discriminant
functions generated from indices, a model developed from
the 2000 data set was tested on a second data set (2001)
with a PROC DISCRIM4 procedure. Using the model gen-
erated from the 2000 data, species classification accuracies

for the 2001 data were 98% overall, averaged across mois-
ture levels. Classification accuracies declined to 60% when
the 2001 data were used similarly to build a model to clas-
sify the 2000 data. The decrease in classification accuracies
was caused by the misclassification of sicklepod as common
cocklebur. This phenomenon occurred more frequently than
the opposite scenario, common cocklebur misclassified as
sicklepod. The misclassification of sicklepod as common
cocklebur was influenced by moisture. The highest overall
classification accuracy using the 2001 model to test the
2000 data was 68% and occurred in the high-stress treat-
ment. Overall classification accuracies in the moderate- and
no-stress treatments were considerably lower, at 52 and
60%, respectively.

Discriminant functions developed from the 2000 data ap-
plied to the 2001 data and from the 2001 data applied to
the 2000 data discriminated species correctly approximately
80%, on average (data not shown). It is desirable to pool
these two data sets and draw potentially broader inferences
concerning the robustness of the discriminant capabilities of
indices combinations. Using one large data set composed of
all readings from 2000 and 2001, both weed species were
individually compared with soybean (soybean vs. common
cocklebur and soybean vs. sicklepod) and the two weed spe-
cies (common cocklebur vs. sicklepod) were compared with
each other (Table 6). Overall discriminant capabilities were
89% or better in all instances, regardless of moisture level
(Table 6). The discriminant capabilities of the model were
then tested within moisture levels. All three species were
included in these analyses. In this instance, soybean was
correctly discriminated from weed species 83% or better,
regardless of moisture level (Table 7). Finally, and perhaps
what could be considered most similar to what might be
seen in the field, data were analyzed across moisture levels
and species. Again, soybean was correctly discriminated
from the weed species 89% (Table 7). These data suggest
that moisture level, at least at the leaf level, does not decrease
the ability of remote sensing to discriminate between weeds
and soybean. The potential for discriminating weeds from
soybean with hyperspectral data is promising and appears
not to be diminished by changes in reflectance caused by
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TABLE 7. Comparison of multiple species both within moisture
levels and across moisture levels using pooled data from 2000 and
2001 with linear discriminant functions created from multiple in-
dices.

Moisturea Soybean
Common
cocklebur Sicklepod Overall

%

Within moisture level
HS
MS
NS

94
92
83

86
88
90

91
89
85

91
91
86

Across moisture levels
All 89 90 89 89

a Moisture: HS, high stress (40% moisture); MS, moderate stress (60%
moisture); NS, no stress (100% moisture).

varying leaf moisture levels. These data and conclusions con-
cerning leaf reflectance set the groundwork for future re-
search that should investigate the degree to which canopy
architecture and wilting affect reflectance. They also dem-
onstrate the promise for using remote sensing to correctly
discriminate patches of weeds so that they may be treated
site specifically.

In summary, moisture stress does not decrease the ability
to discriminate between species. As moisture stress increased,
it became easier to distinguish between species, regardless of
analysis technique. SA (top five band) analysis was a prom-
ising technique because of its accuracy and computational
simplicity. These data, when pooled and analyzed across
years, suggest that moisture level, at least at the leaf level,
does not decrease the ability of remote sensing to discrimi-
nate between weeds and soybean. The potential for discrim-
inating weeds from soybean with hyperspectral data is prom-
ising and appears not to be diminished by changes in re-
flectance caused by varying leaf moisture status.

These data analysis techniques should now be applied to
field data. From an applied perspective, regardless of analysis
technique, soybean was correctly discriminated from weed
species better than 85%, on average. It will be interesting
to see how well these analysis techniques perform when ap-
plied to field data. Possible limitations in the application of
these techniques would include pixel mixing, background
interference from soil, variability in the intensity of sunlight,
and canopy architecture effects. Limitations to this end
would include early-season measurements in which vegeta-
tion (both weeds and soybean) covers only a small portion
of the ground. It will be challenging to discriminate between
weeds and soybean if only a small percentage of the image
comprises vegetation. Soil will contribute substantially to
the image, and the variability within soil types will become
a component of the image-interpretation process that must
be addressed. With the ever increasing spatial and spectral
resolution and the computationally intense algorithms to
discriminate pixel classes, there exists the potential for these
analysis techniques to be beneficial to the producer. One of
the promising findings from this research is that leaf-level
reflectance can be used to separate soybean from weed spe-
cies, regardless of moisture status of leaves.

Sources of Materials
1 ASD FieldSpec Pro FR, Analytical Spectral Devices Inc., 5335

Sterling Drive, Boulder, CO 80301-2344.

2 3000 Plant Water Status Console, Soilmoisture Equipment,
801 South Kellogg Avenue, Goleta, CA 93117.

3 LI-3100 Laboratory Area Meter, LI-COR Biosciences, 4421
Superior Street, Lincoln, NE 68504.

4 SAS, SAS Institute Inc., SAS Campus Drive, Cary, NC 27513.
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